If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-8y-5=0
a = 1; b = -8; c = -5;
Δ = b2-4ac
Δ = -82-4·1·(-5)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{21}}{2*1}=\frac{8-2\sqrt{21}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{21}}{2*1}=\frac{8+2\sqrt{21}}{2} $
| -5x-(6x+3)=-3-7x | | 2/3x=7-1/2x | | 5(5t+)=25t-7 | | 2g+3(-8+4g)=1-1g | | Y=x+3/7 | | 12x-3=32x+4 | | a-2/9=2/5 | | 7a+4=-8a | | 7a−14=5a+2 | | 3d-+1=10 | | -2(1-3x)=22-3x(x-13) | | 7x-4=67 | | -2w-43=3(w-6) | | 5x+35=-13 | | 168=y | | -3(y-8)=2y-26 | | ((3x+1)/3)-((13)/2)=((1-x)/4) | | q-5=-27 | | -8v+18=-2(v+9) | | 4(y+2)=9y+48 | | X/10+x/7=8 | | -4(2n+-3)=12+-8n | | 8.17y=4.2-3.7y | | 3(w-7)+3w=21 | | 7(x+2)-3=2(x+2) | | -6=6y+18+6y | | 3(x+6)=-6(2x-2)+6x | | -2(x+12)=3x-4 | | 2c-3*c-4=c+2 | | (9x+3)=(11x-17) | | 9x-5=30+9 | | 9x-2+4=20x+5 |